СПЛАВЫ ПРЕЦИЗИОННЫЕ

Марки

Precision alloys. Grades

ГОСТ 10994—74

MKC 77.080.20 ΟΚΠ 09 6600

Дата введения 01.01.75

Настоящий стандарт распространяется на прецизионные деформируемые сплавы и устанавливает требования к химическому составу сплавов.

К прецизионным сплавам относятся высоколегированные сплавы с заданными физическими и физико-механическими свойствами, требующие в ряде случаев узких пределов содержания элементов в химическом составе, специальной технологии выплавки и специальной обработки.

1. КЛАССИФИКАЦИЯ

- 1.1. В зависимости от основных свойств прецизионные сплавы подразделяют на следующие группы:
- I магнитно-мягкие, обладающие высокой магнитной проницаемостью и малой коэрцитивной силой в слабых полях:
- II магнитно-твердые сплавы с заданным сочетанием параметров предельной петли гистерезиса или петли гистерезиса, соответствующей полю максимальной проницаемости;
 - III сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР);
- IV сплавы с заданными свойствами упругости, обладающие высокими упругими свойствами в сочетании с другими специальными свойствами (повышенной коррозионной устойчивостью, повышенной прочностью, низкой магнитной проницаемостью, заданными значениями модуля нормальной упругости и температурным коэффициентом модуля упругости);
- V сверхпроводящие сплавы, характеризующиеся специальными электрическими свойствами в области низких температур;
- VI сплавы с высоким электрическим сопротивлением, обладающие необходимым сочетанием электрических и других свойств;
- VII термобиметаллы, представляющие материал, состоящий из двух или более слоев металлов или сплавов с различными температурными коэффициентами линейного расширения, разность которых обеспечивает его упругую деформацию при изменении температуры.

(Измененная редакция, Изм. № 5).

2. МАРКИ И ХИМИЧЕСКИЙ СОСТАВ

2.1. Химический состав сплавов должен соответствовать указанному в табл. 1—7.

Издание официальное

Перепечатка воспрещена

**

ГОСТ 10994-74 С. 2

Таблица 1 **I. Сплавы с высокой магнитной проницаемостью (магнитно-мягкие)**

	Химический состав, %											
Марка сплава	F 9	海	ец	Сера	Фос- фор			ней	-			Thie
	Углерод, не более	Кремний	Марганец	не б	олее	Хром	Никель	Молибден	Кобальт	Медь	Железо	Остальные
34НКМ, 34НКМП	0,03	0,15—0,30	0,3-0,6	0,02	0,02	_	33,5—35,0	2,8—3,2	28,5—30,0	_	Ос- таль-	_
35НКХСП 40Н	0,03 0,05	0,8—1,2 0,15—0,30	0,3—0,6 0,3—0,6	0,02 0,02	0,02 0,02	1,8—2,2	35,0—37,0 39,0—41,0	_ _	27,0—29,0	— Не бо-	ное То же »	_ _
40НКМ, 40НКМП	0,03	Не бо- лее 0,30	0,3-0,6	0,02	0,02	_	39,3—40,7	3,8-4,2	24,5—26,0	лее 0,2 —	*	_
45H	0,03	0,15-0,30	0,6—1,1	0,02	0,02	_	45,0—46,5	_	_	Не бо- лее 0,2	*	_
47НК 50Н, 50НП	0,03 0,03	0,15—0,30 0,15—0,30	0,3—0,6 0,3—0,6	0,02 0,02	0,02 0,02	_	46,0—48,0 49,0—50,5	_ _	22,5—23,5	— Не бо- лее 0,2	» »	_ _
50HXC	0,03	1,1—1,4	0,6—1,1	0,02	0,02	3,8-4,2	49,5—51,0	_	_	Не бо- лее 0,2	*	_
64H (65H) 68HM, 68HMП	0,03 0,03	0,15—0,30 Не бо- лее 0,30	0,3-0,6 0,4-0,8	0,02 0,02	0,02 0,02	_	63,0—65,0 67,0—69,0		_ _	— — —	» »	_ _
76НХД, 77НМД,	0,03 0,03	0,15—0,30 0,10—0,30	0,3-0,6 He бо-	0,02 0,01	0,02 0,02	1,8—2,2	75,0—76,5 75,5—78,0	_ 3,9—4,5	- -	4,8—5,2 4,8—6,0	» »	_ _
77НМДП 79НМ, 79НМП	0,03	0,30-0,50	лее 1,4 0,6—1,1	0,02	0,02	_	78,5—80,0	3,8-4,1	_	Не бо- лее 0,20	»	Титан не более
												0,15 Алюми- ний не более 0,15
79H3M	0,03	0,15-0,30	0,3—0,6	0,02	0,02	_	78,5—80,0	3,0—3,4	_	_	Ос- таль-	_
80HXC	0,03	1,1—1,5	0,6—1,1	0,02	0,02	2,6—3,0	79,0—81,5	_	_	Не бо- лее 0,20	ное »	Титан не более 0,15 Алюми- ний не более
36KHM	0,03	Не бо-	Не более	0,015	0,015	_	21,5—22,5	2,8—3,2	35,5—37,0	_	*	0,15 —
83НФ	0,01	лее 0,40 0,50—1,0	0,5 Не более 0,5	0,01	0,01	Не бо- лее 0,5	82,5—84,2	_	_	_	*	Ванадий
81 HMA	0,01	Не бо- лее 0,1	Не более 0,35	0,01	0,01		80,5—81,7	4,7—5,2	_	_	*	3,8—4,2 Титан 2,5—3,3
27KX	0,04	Не более 0,25	0,2-0,4	0,015	0,015	0,3-0,6	Не более 0,3	_	26,5—28,0	_	*	
49K2 Φ	0,05	Не более 0,30	Не более 0,3	0,02	0,02	_	Не более 0,5	_	48,0—50,0	_	*	Ванадий 1,7—2,1
49КФ	0,05	Не более 0,30	Не более 0,3	0,02	0,02	_	Не более 0,5	_	48,0—50,0	_	»	1,7—2,1 Ванадий 1,3—1,8
49К2 ФА	0,03	Не более 0,15	Не более 0,3	0,01	0,01	_	Не более 0,3	_	48,0—50,0	_	*	Ванадий 1,7—2,0
16X	0,015	Не более 0,20	Не более 0,3	0,015	0,015	15,5— 16,5	Не более 0,3	_	_	_	»	

Примечание. Сплавы марок 35НКХСП, 40НКМП, 40НКМ, 64H, 79НЗМ, 36КНМ не допускаются к применению во вновь создаваемой модернизируемой технике с 01.01.91.

II Сплавы магнитно-твердые

					Хими	ческий сос	тав, %)			
Марка сплава	Углерод	Кремний	Марганец	Cepa	Фос- фор	Хром	Ни- кель	Ванадий	Кобальт	Железо	Осталь- ные элемен-
	-	-		не б	олее		не более				ты
<u>=</u>	Не более 0,12	Не более 0,50	Не более 0,5	0,02	0,025	Не более 0,5	0,7	9,8—11,2	52,0—54,0	Осталь-	_
52K11Φ	Не более 0,12	Не более 0,50	Не более 0,5	0,02	0,025	Не более 0,5	0,7	10,0—11,5	52,0—54,0	То же	_
52K12Φ	Не более 0,12	Не более 0,50	Не более 0,5	0,02	0,025	Не более 0,5	0,7	11,6—12,5	52,0—54,0	*	_
52K13Φ	Не более 0,12	Не более 0,50	Не более 0,5	0,02	0,025	0,5			52,0—54,0	»	_
35КХ4Ф	Не более 0,06	Не более 0,30	Не более 0,4	0,02	0,02				34,3—35,8	»	_
35КХ6Ф	Не более 0,08	Не более 0,30	Не более 0,4	0,02					34,3—35,8	*	_
35КХ8Ф	Не более 0,09	Не более 0,30	Не более 0,4	0,02	0,02				34,3—35,8	*	_
EX3 EB6	0,90—1,10 0,68—0,78	0,17—0,40 0,17—0,40	0,2—0,4 0,2—0,4	0,02	0,03	2,8—3,6 0,3—0,5	0,3	_	_	» »	— Воль- фрам
EX5K5 EX9K15M2	0,90—1,05 0,90—1,05	0,17—0,40 0,17—0,40	0,2—0,4 0,2—0,4	0,02 0,02	0,03 0,03	5,5—6,5 8,0—10,0	0,6 0,6		5,5—6,5 13,5—16,5	» »	5,2—6,2 — Молиб- ден 1,2—1,7

П р и м е ч а н и е. Сплав марки ЕВ6 не допускается к применению во вновь создаваемой и модернизируемой технике с 01.01.91.

Таблица 3 III. Сплавы с заданным температурным коэффициентом линейного расширения

	Химический состав, %										
Марка сплав а	Угле- род не б	Крем- ний олее	Марганец	Сера	Фос- фор олее	Хром	Никель	Кобальт	Медь	Железо	Остальные элементы
29HK, 29HK-ВИ, 29HK-ВИ-1,	0,03	0,30	Не более 0,4	0,015	0,015	Не более 0,1	28,5—29,5	17,0—18,0	Не более 0,2	Осталь- ное	Алюминия не более 0,2 Титана
29НК-1 30НКД, 30НКД-ВИ	0,05	0,30	Не более 0,4	0,015	0,015	_	29,5—30,5	13,0—14,2	0,3-0,5	»	не более 0,1 —
32НКД	0,05	0,20	Не более 0.4	0,015	0,015	_	31,5—33,0	3,2-4,2	0,6-0,8	»	_
32НК-ВИ	0,03	0,30	Не бол е е 0.4	0,015	0,015	Не более 0,10	31,5—33,0	3,7—4,7	_	»	_
33НК, 33НК-ВИ	0,05	0,30	Не более	0,015	0,015		32,5—33,5	16,5—17,5	_	»	_
35HKT	0,05	0,50	Не более 0.4	_	_	_	34,0—35,0	5,0-6,0	0,2-0,4	»	Титан 2,3—2,8
36H, 36H-ВИ	0,05	0,30	0,3-0,6	0,015	0,015	Не более 0,15	35,0—37,0	-	Не более 0,1	»	Алюминий не более 0,1 Ванадий не более 0,1 Молибден не более 0,1
36HX	0,05	0,30	0,3-0,6	0,015	0,015	0,4-0,6	35,0—37,0	_	Не более	»	- HC GONCC 0,1
38НКД, 38НКД- ВИ	0,05	0,30	Не более 0,4	0,015	0,015	_	37,5—38,5	4,5—5,5	0,25 4,5—5,5	*	_
39H	0,05	0,30	0,3-0,6	0,015	0,015	_	38,0—40,0	_	Не более	»	_
42H, 42H-ВИ	0,03	0,30	Не более 0,4	0,015	0,015	_	41,5—43,0	_	0,2 Не более 0,1	»	_
						113	8				

Таблица 4

						Хими	ческий соста	в, %			
Марка сплава	Угле- род	Крем- ний	Марганец	Cepa	Фос- фор	Хром	Никель	Кобальт	Медь	Железо	Остальные
	не б	более		не б	олее	•					элементы
42НА-ВИ	0,03	0,15	Не более 0,05	0,010	0,006	_	41,5—42,5	_	Не более 0,1	Осталь- ное	_
47HX	0,05	0,30	0,3-0,6	0,015	0,015	0,7—1,0	46,0—47,0	_	Не более	»	_
47H3X	0,05	0,30	0,3-0,6	0,015	0,015	3,0—4,0	46,0—48,0	-	0,2 Не более 0,2	»	_
47НД, 47НД-ВИ	0,05	0,30	Не более 0,4	0,015	0,015	_	46,0—48,0	_	4,5—5,5	»	_
47HXP	0,05	0,30	Не более 0,4	0,015	0,015	4,5—6,0	46,0—48,0	_	_	»	Бор не более 0,02
48HX	0,05	0,30	0,3-0,6	0,015	0,015	0,7—1,0	48,0—49,5	_	Не более	»	_
52H, 52H-ВИ	0,05	0,20	Не более 0,4	0,015	0,015	Не бо- лее 0,2	51,5—52,5	_	0,2 Не более 0,2	»	_
58Н-ВИ	0,03	0,30	Не более 0,5	0,015	0,015	′	57,5—59,5	_	Не более 0,3	»	_

Примечания:

- 1. В сплаве марок 29НК, 29НК-ВИ, 29НК-1, 29НК-ВИ-1 допускается отклонение от массовой доли кобальта \pm 0,5 %. Массовая доля кремния в сплаве 29НК-ВИ, 29НК-ВИ-1 должна быть не более 0,28 %.
- 2. Сплав марки 36H по соглашению сторон изготовляется с массовой долей углерода не более 0.10~%.
- 3. Для сплавов марок 29HK, 29HK-ВИ сумма примесей (углерод, хром, медь, титан, сера, фосфор, марганец, кремний, алюминий) не должна превышать 1 %.
- 4. В сплавах вакуумно-индукционной выплавки массовая доля газов должна быть не более: кислорода 0,008~%, азота 0,01~%, водорода 0,001~%. Массовая доля углерода в сплавах специальной выплавки должна быть не более 0,02~%.
- 5. Для сплавов марок 42H, 42H-ВИ, 42HА-ВИ массовая доля ванадия, молибдена, хрома, алюминия должна быть не более 0,1 % каждого.
- 6. Сплавы марок 39H, 33HK, 33HK-ВИ, 47H3X не допускаются к применению во вновь создаваемой и модернизируемой технике с 01.01.91.
- 7. По согласованию изготовителя с потребителем при выплавке в 40-тонных печах допускается в сплавах марок 36H и 42H массовая доля ванадия, молибдена, алюминия не более 0.15% каждого, хрома не более 0.2%.

IV. Сплавы с заданными свойствами упругости

					_	Хи	мический	состав,	%				
Марка сплава	Углерод, не более	Крем- ний	Марга- нец	Сера не б	Фос- фор	Хром	Никель	Моли6- ден	Титан	Алюми- ний	Кобальт	Железо	Остальные элементы
36НХТЮ	0,05	0,3-0,7	0,8-1,2	0,02	0,02	11,5— —13,0	35,0— —37,0	_	2,7—3,2	0,9—1,2	_	Осталь-	_
36HXTЮ5M	0,05	0,3-0,7	0,8-1,2	0,02	0,02	12,5— -13,5	35,0—	4,0— —6,0	2,7—3,2	1,0—1,3	_	»	_
36НХТЮ8М	0,05	0,3-0,7	0,8—1,2	0,02	0,02	12,0— —13,5	35,0—		2,7—3,2	1,0—1,3	_	»	_
42HXTЮ	0,05	0,5-0,8	0,5-0,8	0,02	0,02	5,3— -5,9	41,5— -43,5		2,4—3,0	0,5—1,0	_	»	_
42НХТЮА	0,05	0,4-0,7	0,3-0,6	0,02	0,02	5,0— -5,6	41,5— -43,5	_	2,3-2,9	0,6—1,0	_	»	_
44НХТЮ	0,05	0,3-0,6	0,3-0,6	0,02	0,02	5,0— -5,6	43,5— 43,5— —45,5	_	2,2—2,7	0,4—0,8	_	»	_

	Химический состав, %												
Марка сплава	Углерод, не более	Крем- ний	Марга- нец	Сера	Фос- фор	Хром	Никель	Молиб- ден	Титан	Алюми- ний	Кобальт	Железо	Остальные элементы
68НХВКТЮ, 68НХВКТЮ-ВИ	0,05	Не более 0,4	Не более 0,4	0,010	0,015	18,0— —20,0	Ос- таль- ное	_	2,7—3,2	1,3—1,8	5,5— —6,7	Не бо- лее 1,0	Вольфрам 9,0—10,5 Бор расчетный 0,003 Церий расчетный 0,05 Медь не более 0,07 Ванадий не более 0,2 Ниобий не более 0,2
97НЛ	0,03	Не более 0,02	Не более 0,3	0,01	0,01	_	Ос- нова	_	_	Не более 0,3	_	Не более 0,5	Берилий 2,1—2,5 Медь не более 0,1
17ХНГТ	0,05	Не более 0,6	0,8-1,2	0,02	0,02	16,5— —17,5	6,5— —7,5	_	0,8-1,2	Не более 0,5	_	Ос- таль- ное	_
40KXHM	$\begin{bmatrix} 0,07-\\ -0,12 \end{bmatrix}$	Не более 0,5	1,8—2,2	0,02	0,02	19,0— —21,0	15,0— —17,0	6,4— —7,4	_	_	39,0— —41,0	»	_
40КНХМВТЮ	0,05	Не более 0,5	1,8-2,2	0,02	0,02	11,5— —13,0	18,0— —20,0	3,0— —4,0	1,5—2,0	0,2—0,5	39,0— —41,0	*	Воль- фрам 6,0—7,0

 Π р и м е ч а н и е. Сплав марки 36НХТЮ8М не допускается к применению во вновь создаваемой и модернизируемой технике с 01.01.93.

V. Сверхпроводящие сплавы

Таблица 5

-				Химическ	ий состав, %			
Марка сплава	Углерод, не более	Титан	Ниобий	Цирко- ний	Молиб- ден	Рений+ железо	Кисло- род	Азот
							не более	
35БТ	0,03	60,0-64,0	33,5—36,5	1,7—4,3	_	_	_	_
БТЦ-ВД	0,03	0,07—0,20	Осталь- ное	0,2—1,0	_	_	0,005	0,005
70ТМ-ВД	0,03	73,5—76,0	_	_	24,0—26,0	2,5	_	_

ГОСТ 10994—74 С. 6

Таблица 6 VI. Сплавы с высоким электрическим сопротивлением

	V1. Сплавы с высоким электрическим сопротивлением Химический состав. %										
Марка	од, ree	іий	L	Cepa	Фос-		29		-и	30	Остальные
сплава	Углерод, не более	Кремний	Марга- нец	не б	фор олее	Хром	Никель	Титан	Алюми-	Железо	элементы
X15IO5	0,08	Не более 0,7	Не бо- лее 0,7	0,015	0,030	13,5—15,5	Не более 0,6	0,20—0,60	4,5—5,5	Осталь- ное	Кальций расчетный 0,1 Церий расч
Н80ХЮД-ВИ	0,03	Не более 0,35	Не бо- лее 0,2	0,008	0,010	19,0—20,0	Основа	_	3,5—4,0	Не более 0,5	четный 0,1 Медь 0,9—1,2
X23IO5	0,05	Не более 0,6	Не бо- лее 0,3	0,015	0,020	21,5—23,5	Не более 0,6	0,15—0,40	4,6—5,3		Кальций рас- четный 0,1 Церий рас- четный 0,1
Х27Ю5Т	0,05	Не более 0,6	Не более 0,3	0,015	0,020	26,0—28,0	Не более 0,6	0,15-0,40	5,0—5,8	Осталь- ное	Кальций расчетный 0,1 Церий расчетный 0,1 Барий расчетный не более 0,5
ХН70Ю-Н	0,10	Не более 0,8	Не более 0,3	0,020	0,020	26,0—28,9	Осталь- ное	_	3,0—3,8	Не более 1,5	
хн20юс	0,08	2,0-2,7	0,3-0,8	0,020	0,030	19,0—21,0	19,5—21,5	Не более 0,20	1,0—1,5	Осталь- ное	Цирконий расчетный 0,2 Церий расчетный 0,1 Кальций расчетный 0,1
Х20Н73ЮМ-ВИ	0,05	Не более 0,2	Не более 0,3	0,010	0,010	19,0—21,0	Осталь- ное	Не более 0,05	3,1—3,6	1,5—2,0	Четный 0,1 Молибден 1,3—1,8 Церий рас- четный 0,1
Х15Н60-Н	0,06	1,0—1,5	Не более	0,015	0,020	15,0—18,0	55,0—61,0	Не более 0,20	Не более	Осталь- ное	Четный 0,1 Цирконий 0,2—0,5
Х15Н60-Н-ВИ	0,06	1,0-1,5	0,6 Не более 0,6	0,015	0,020	15,0—18,0	55,0—61,0	Не более 0,20	0,20 Не более 0,20	Осталь- ное	Церий расчет- ный 0,1 Магний рас- четный 0,1
X15H60	0,15	0,8—1,5	Не более	0,020	0,030	15,0—18,0	55,0—61,0	Не более 0,30	Не более 0,20	Осталь- ное	— — — — — — — — — — — — — — — — — — —
Х20Н80-Н-ВИ	0,05	1,0—1,5	1,5 Не более 0,6	0,015	0,020	20,0—23,0	Осталь- ное	Не более 0,20	He более 0,20	Не более 1,0	Церий расчетный 0,1 Магний расчетный 0,12
Х20Н80-Н	0,06	1,0—1,5	Не более 0,6	0,015	0,020	20,0—23,0	Осталь- ное	Не более 0,20	Не более 0,20	Не более 1,0	
Х20Н80	0,10	0,9—1,5	0,6 Не более 0,7	0,020	0,030	20,0—23,0	Осталь- ное	Не более 0,30	He более 0,20	Не более 1,5	_
Х20Н80-ВИ	0,05	0,4—1,0	0,7 Не более 0,3	0,010	0,010	20,0—23,0	Осталь- ное	Не более 0,05	Не более	Не более 1,5	_
H50K10	0,03	Не более 0,15	0,3 Не более 0,3	0,015	0,015	_	50,0—52,0	_	0,15	Осталь- ное	Кобальт 10,0—11,0

		-				Хим	ический сос	тав, %			_
Марка сплава	Углеро д, не более	Кремний	Марга- нец	Сера не б	Фос- фор олее	Хром	Никель	Титан	Алюми- ний	Железо	Остальные элементы
Х23Ю5Т	0,05	Не более 0,5	Не более 0,3	0,015	0,030	22,0—24,0	Не более 0,6	0,2-0,5	5,0—5,8	Осталь- ное	Кальций расчетный 0,1 Церий расчетный 0,1

Примечания:

- 1. Сплавы марок X15H60-H и X20H80-H должны выплавляться в индукционных печах. Допускается выплавка в плазменных печах с керамическим тиглем по согласованию изготовителя с потребителем до 01.01.92.
- 2. Для сплава марки X20H80 наличие остаточных редкоземельных элементов, а также бария, кальция, магния не является браковочным признаком. Для сплава марки X20H80-BИ раскисление редкоземельными элементами и цирконием не допускается.
- 3. При выплавке сплавов X15Ю5, X23Ю5, X23Ю5Т, X27Ю5Т, предназначенных для изготовления нагревательных элементов, должны быть использованы свежие шихтовые материалы. Допускается использовать отходы собственных марок.
 - 4. В сплавах марок X15Ю5, X23Ю5, X27Ю5Т допускается массовая доля циркония не более 0,1 %.
 - 5. В сплаве марки ХН20ЮС допускается массовая доля азота не более 0,15%.

Таблица 7 VII. Составляющие термобиметаллов

				Xν	мичес	кий состав,	%			
Марка сплава	Углерод,	Кремний	Марганец	Cepa	Фос- фор	Хром	Никель	Медь	Железо	Осталь- ные
	не более			не б	олее					эле- менты
19HX	0,08	0,2—0,4	0,3-0,6	0,02	0,02	10,0—12,0	18,0—20,0	_	Осталь-	_
20НГ	0,05	0,15-0,30	5,5—6,5	0,02	0,02		19,0—21,0		ное »	_
24HX	0,25-0,35	0,15-0,30	0,3-0,6	0,02	0,02	2,0-3,0	23,0—25,0	_	»	–
36H	0,05	0,30	0,3-0,6	0,02	0,02	Не более 0,15	35,0—37,0	_	»	_
42H	0,03	0,30	Не более 0,4	0,02	0,02	<u>_</u>	41,5—43,0	Не более 0,1	»	_
45HX	0,05	0,15-0,30	0,4-0,6	0,02	0,02	5,0-6,5	44,0—46,0		»	_
46HX	0,05	Не более 0,3		0,02			45,5—46,5		*	_
50H	0,03	0,15—0,30		0,02	0,02	_	49,0—50,5	Не более 0,2	»	_
75ГНД	0,05	Не более 0,5	Основа	0,02	0,03	_	14,0—16,0		Не более 0,8	_

(Измененная редакция, Изм. № 2, 3, 5).

2.2. Химический состав сплавов групп I, II и V является факультативным при соответствии сплавов требованиям технической документации на металлопродукцию.

Химический состав сплавов групп III, IV, VI и VII может быть незначительно изменен в технической документации на конкретную металлопродукцию для обеспечения требуемых свойств.

2.3. Массовая доля примесей, регламентированных табл. 1—7 (серы, фосфора, хрома, никеля, титана, алюминия и т. д.), контролируется изготовителем периодически, но не реже одного раза в гол.

2.4. Наименование марок сплавов, за исключением группы VI, состоит из буквенных обозначений элементов и двузначного числа впереди буквы, обозначающего среднюю массовую долю элемента в процентах, входящего в основу сплава (кроме железа).

Наименование марок сплавов VI группы состоит из обозначения элемента и следующих за ним цифр. Цифры, стоящие после букв, означают среднюю массовую долю легирующего элемента в целых единицах.

Химические элементы в марках обозначены следующими буквами: Б — ниобий, В — вольфрам, Γ — марганец, Д — медь, K — кобальт, Л — берилий, M — молибден, H — никель, P — бор, C — кремний, T — титан, W — алюминий, W — ванадий.

Буква «А» в конце марки обозначает, что сплав изготовляется с суженными пределами химического состава, цифра 1 в наименовании марок 29НК-1 и 29НК-ВИ-1 обозначает суженные пределы норм ТКЛР.

Буква Е в наименовании марок обозначает сплав магнитно-твердый.

Знак «—» в таблицах означает, что массовая доля элемента не регламентируется.

При применении специальных способов выплавки или их сочетаний: вакуумно-индукционного, электронно-лучевого, плазменного, электрошлакового и вакуумно-дугового переплавов сплавы дополнительно обозначают через тире соответственно: ВИ, ЭЛ, П, Ш, ВД и их химический состав должен соответствовать нормам табл. 1—7, если иное содержание элементов не оговорено в технической документации на металлопродукцию.

- 2.3, 2.4. (Измененная редакция, Изм. № 5).
- 2.5. Примерное назначение и основные технические характеристики сплавов указаны в приложении.
- 2.6. Химический состав сплавов определяют на одной пробе от плавки по ГОСТ 12344Γ ОСТ 12357, ГОСТ 12364, ГОСТ 28473, ГОСТ 29095 или другими методами, обеспечивающими необходимую точность. Отбор проб по ГОСТ 7565. Содержание газов определяют по ГОСТ 17745.

(Введен дополнительно, Изм. № 5, Поправка).

Таблица 1*

Примерное назначение сплавов и основные технические характеристики

Марка сплава	Основная техническая характеристика	Примерное назначение
	I. Сплавы с высокой магнитной проницаемос	тью (магнитно-мягкие)
45H, 50H	Сплавы с повышенной магнитной проницаемостью, обладающие наивысшим значением индукции насыщения из всей группы железоникелевых сплавов, не менее 1,5 Т	Для сердечников междуламповых и малогабаритных силовых трансформаторов, дросселей, реле и деталей магнитных цепей, работающих при повышенных индукциях без подмагничивания или с небольшим подмаг-
50HXC	Сплав с повышенной магнитной проницаемостью и высоким удельным электросопротивлением при индукции не менее 1,0 Т	ничиванием Для сердечников импульсных трансформаторов и аппаратуры связи звуковых и высоких частот, работающих без подмагничивания или с небольшим подмагничиванием, для сердечников магнитных головок
40H	Сплав с повышенной магнитной проницаемостью и индукцией насыщения	Для сердечников помехоподавляющих проводов зажигания автомобилей
50НП	Сплав марки 50H с кристаллографической текстурой и прямоугольной петлей гистерезиса	Для сердечников магнитных усилителей, коммутирующих дросселей, выпрямительных установок, элементов вычислительных аппаратов счетно-решающих машин
34НКМП, 35НКХСП, 40НКМП, 68НМП	Сплавы 34НКМ, 35НКХС, 40НКМ и 68НМ с магнитной текстурой и прямоугольной петлей гистерезиса, высокой магнитной проницаемостью и индукцией насыщения не менее 1,2—1,5 Т	Для сердечников магнитных усилителей, коммутирующих дросселей, выпрямительных установок, элементов вычислительных аппаратов счетно-решающих машин
76НХД, 79НМ, 80НХС, 77НМД	Сплавы с высокой магнитной проницаемостью в слабых полях при индукции насыщения 0,65—0,75 Т	Для сердечников малогабаритных трансформаторов, дросселей и реле, работающих в слабых полях магнитных экранов. В малых толщинах (0,05—0,02 мм) — для сердечников импульсных трансформаторов, магнитных усилителей и бесконтактных реле; марка 80НХС — для сердечников магнитных головок
68HM, 79H3M	Сплавы с высокими значениями проницаемости и приращений индукции при однополярном импульсном намагничивании, обладающие магнитной текстурой	Для сердечников импульсных и широ- кополосных трансформаторов
47HK, 64H, 40HKM	Сплавы с низкой остаточной индукцией и постоянством проницаемости в широком интервале полей, обладающие магнитной текстурой	Для сердечников катушек постоянной индуктивности, дросселей фильтров, широкополосных трансформаторов
16X	Сплав с высокой индукцией в слабых и средних полях и низкой коэрцитивной силой; с коррозионной стойкостью в ряде кислотных и агрессивных сред	Для магнитопроводов различных систем управления якорей и электромагнитов; деталей электрических машин без защитных покрытий, работающих в сложных условиях воздействия среды, температуры и давления

^{*} Табл. 2. **(Исключена, Изм. № 2).**

Продолжение табл. 1

Марка сплава	Основная техническая характеристика	Примерное назначение
36KHM	Сплав с высокой индукцией в слабых и средних полях и низкой коэрцитивной силой; с высокой корро-	Для магнитопроводов, работающих в морской воде
83НФ	зионной стойкостью в морской воде Сплав с наивысшей начальной проницаемостью в постоянных и	Для сердечников малогабаритных трансформаторов и дросселей, работающих в слабых полях. Для магнитных экранов
27KX	переменных полях Сплав с высокой индукцией от 24 кгс в средних и сильных полях, высокой точкой Кюри 950° С и повышенными механическими свойствами	Для роторов и статоров электрических машин и других магнитопроводов, работающих при обычных и высоких температурах и в условиях механических нагрузок
49К2Ф	Сплав с высоким магнитным на- сыщением, высокой и постоянной проницаемостью, высокой магнито- стрикцией и высокой точкой Кюри	Для пакетов ультразвуковых преобразователей телефонных мембран
49КФ	Сплав с магнитным насыщением не менее 2,35 Т, с высокой точкой Кюри 950° С и высокой магнитострикцией	Для сердечников и полюсных наконечников, магнитов и соленоидов
49К2ФА	Сплав с магнитным насыщением не менее 2,35 Т, с высокой точкой Кюри 950° С высокой магнитострикцией	Для трансформаторов, магнитных усилителей, роторов и статоров электрических машин
79НМП, 77НМДП	Сплавы с высокой прямоугольностью петли гистерезиса и низким коэффициентом перемагничивания	Для малогабаритных ленточных магнитных сердечников, переключающихся устройств, логических элементов, регистров сдвига, триггерных систем
81HMA	Сплав с наивысшим значением магнитной проницаемости в слабых постоянных и переменных магнитных полях с пониженной чувствительностью к механическим воздействиям и повышенной прочностью. В зависимости от окончательной термообработки от может быть от 640 H/мм² (65 кгс/мм²) до 1270 H/мм² (130 кгс/мм²)	Для сердечников магнитных головок, малогабаритных трансформаторов, дросселей, реле, дефектоскопов, магнитных экранов, феррозондов для применения в радиоэлектронной аппаратуре высокой чувствительности

 Π р и м е ч а н и е. Сплавы марок 76НХД, 77НМД и 79НМ после термической обработки с замедленным охлаждением от 600° С характеризуются незначительным изменением свойств в климатическом интервале температур.

II. Сплавы магнитно-твердые

52К10 Ф , 52К11 Ф ,	Сплавы с магнитной энергией $(16-24) 10^3 \text{ TA/m}.$
52K12Φ,	В зависимости от содержания ва-
52 Κ13 Φ	надия и температуры отпуска может
	быть получено необходимое соот-
	ношение коэрцитивной силы и
	остаточной индукции в пределах
	$(4,8-32) \times 10^3 \text{A/м} \text{и} 1,2-0,65 \text{T}.$ Спла-
	вы приобретают магнитные свой-
	ства после холодной деформации
	70—90 % и последующего отпуска.
	Сплавы анизотропны. Проволока из
	сплава марки 52К13Ф после спе-
	циальной термомеханической об-
	работки обладает коэрцитивной си-
	лой $(32-40) \times 10^3$ А/м при индукции
	0,80—1,0 T

Для малогабаритных постоянных магнитов. Сплавы марок 52К10Ф и 52К11Ф, кроме того, для активной части гистерезисных двигателей

Марка сплава	Основная техническая характеристика	Примерное назначение
35КХ4Ф, 35КХ6Ф, 35КХ8Ф	Сплавы с заданными параметрами частной (в поле максимальной проницаемости) петли гистерезиса. Приобретают магнитные свойства после холодной деформации и отпуска. Сплавы марок 35КХ4Ф, 35КХ6Ф и 35КХ8Ф анизотропны, но могут изготовляться с пониженной анизотро-	Для активной части гистерезисных двига- телей
EX3, EB6, EX5K5, EX9K15M2	пией. Легированные магнитотвердые стали с коэрцитивной силой от 5 до 12 кА/м и остаточной индукцией от 0,8 до 1,0 Т	Для построенных магнитов неответственного назначения

EX3, EB6, EX5K5, EX9K15M2	готовляться с пониженной анизотропией. Легированные магнитотвердые стали с коэрцитивной силой от 5 до 12 кА/м и остаточной индукцией от 0,8 до 1,0 Т	Для построенных магнитов неответственного назначения
III.	. Сплавы с заданным температурным коэ расширения (ТКЛР)	
36H, 36H-ВИ	Сплав с минимальным ТКЛР 1,5·10 ⁻⁶ град ⁻¹ в интервале темпе-	Для деталей приборов, требующих постоянства размеров в интервале климатичес-
32НКД	ратур от минус 60 до плюс 100° С Сплав в закаленном состоянии с минимальным ТКЛР $1,0 \times 10^{-6}$ град $^{-1}$ в интервале температур от минус 60 до плюс 100° С	ких температур Для деталей приборов очень высокой точности, требующих постоянства размеров в интервале климатических температур
29НК, 29НК-ВИ, 29НК-1, 29НК-ВИ-1	Сплав с ТКЛР (4,5—6,5) × × 10—6 град—1 в интервале температур от минус 70 до плюс 420 °C Сплавы 29НК-1 и 29НК-ВИ-1 характеризуются суженными значениями ТКЛР по сравнению со сплавами 29НК и 29НК-ВИ	Для вакуумплотных спаев элементов радиоэлектронной аппаратуры со стеклами C49—1, C52—1, C48—1, C47—1
30НКД, 30НКД-ВИ	Сплав с ТКЛР (3,3—4,6) × × 10 ⁻⁶ град ⁻¹ в интервале температур от минус 60 до плюс 400 °C	Для вакуумплотных спаев с тугоплавким стеклом C38—1 и для отдельных видов спаев со стеклом C40—1
38НКД, 38НКД-ВИ	Сплав с ТКЛР (7,0—7,8) × ×10 ⁻⁶ град ⁻¹ в интервале температур от минус 60 до плюс 400 °C	Для вакуумплотных спаев со стеклом $\Pi-6$, $C72-4$, с сапфиром
47HX	Сплав с ТКЛР $(8,0-9,0)$ × $\times 10^{-6}$ град $^{-1}$ в интервале температур от минус 70 до плюс 450 °C	Для вакуумплотных спаев с термометрическим стеклом 16Ш, C72—4 и т. д.
48HX	Сплав с ТКЛР (8,5—9,5) × × 10 ⁻⁶ град ⁻¹ в интервале температур от минус 70 до плюс 450 °C	Для вакуумплотных спаев с термометрическим стеклом 16Ш, С72—4 и т. д.
47H3X	Сплав с ТКЛР $(9, 5-10,5) \times 10^{-6}$ град $^{-1}$ в интервале температур от минус 70 до плюс 400 °C	Для вакуумплотных соединений с тон- кими пленками мягкого стекла «Лензос» ит. д.
33НК, 33НК-ВИ	Сплав с ТКЛР (6—9) × × 10 ⁻⁶ град ⁻¹ в интервале температур от минус 70 до плюс 470 °C	Для соединений с керамикой, слюдой и стеклом C72—4
47НД, 47НД-ВИ	Сплав с ТКЛР $(9,0-11,0) \times 10^{-6}$ град $^{-1}$ в интервале температур от минус 70 до плюс 440 °C, с высокой проницаемостью и индукцией насыщения 1,4 Т	Для спайки с мягким стеклом C93—4,C93—2, C95—2, C94—1, C90—1, C90—2 и т. д., для соединения с керамикой и слюдой для пружин герметических контактов

		Продолжение табл. 1
Марка сплава	Основная техническая характеристика	Примерное назначение
47HXP	Сплав с ТКЛР (8,5—11,0) × × 10 ⁻⁶ град ⁻¹ в интервале температур от минус 70 до плюс 330 °C	Для вакуумных спаев элементов радиоэлектронной аппаратуры со стеклом C90—1, C93—2, C93—4, C94—1, C95—2 и
42H, 42HA-ВИ, 42H-ВИ	Сплав с ТКЛР $(4,5-5,5) \times 10^{-6}$ град $^{-1}$ в интервале температур от минус 70 до плюс 340 °C	т.д. В электровакуумной технике
18ХТФ, 18ХМТФ	Тур от минус 70 до плюс 340 С Сплав с ТКЛР $(11-11,4) \times 10^{-6}$ град $^{-1}$ в интервале температур от минус 70 до плюс 550 °C	Для вакуумплотных соединений со стеклом C90—1, C93—4, C95—2 и герметизированных контактов
52H, 52H-ВИ	Сплав с ТКЛР $(1,0-11,4) \times 10^{-6}$ град $^{-1}$ в интервале температур от минус 70 до плюс 550 °C, с высокой проницаемостью и индукци-	Для соединения с мягким стеклом C90—1, C90—2, C93—2, C94—1, C95—2 и C93—4
58Н—ВИ	ей насыщения 1,5 T Сплав с ТКЛР $(11,5\pm0,3) \times 10^{-6}$ град $^{-1}$ в интервале температур от плюс 20 до плюс 100 °C и	Для штриховых мер длины
35HKT	высокой стабильностью размеров Сплав дисперсионно-твердеющий с ТКЛР не более 3.5×10^{-6} град $^{-1}$ в интервале температур от плюс 20 до плюс 60 °C и от плюс 20 до минус	Для деталей приборов, работающих при повышенных нагрузках
32НК—ВИ	60 °C с временным сопротивлением не менее 105 krc/mm^2 Сплав в отожженном состоянии с минимальным ТКЛР не более $1,5 \cdot 10^{-6} \text{ град}^{-1}$ в интервалах температур от плюс 20 до плюс 100 °C и от	Для изделий с полированной поверхностью, деталей сложной формы, которые нельзя подвергать закалке для получения более низкого ТКЛР
39H	плюс 20 до минус 60 °C Сплав с ТКЛР $4 \cdot 10^{-6}$ град $^{-1}$ в интервале температур от плюс 20 до минус 258 °C	Для конструкций и трубопроводов, рабо- тающих при низких температурах
36HX	Сплав с ТКЛР $(1,0-2,0) \times 10^{-6}$ град $^{-1}$ в интервалах температур от плюс 20 до плюс 100 °C и от плюс 20 до минус 258 °C	Для конструкций и трубопроводов, работающих при низких температурах
	IV. Сплавы с заданными свойства	ами упругости
40KXHM	Сплав с временным сопротивлением проволоки $2450-2650 \text{ MH/m}^2$ ($250-270 \text{ кгс/мм}^2$), с модулем нормальной упругости 196000 MH/m^2 (20000 кгс/мм^2), немагнитный корро-	Для заводных пружин часовых механизмов, витых цилиндрических пружин, работающих при температуре до 400° С, для кернов электроизмерительных приборов, для деталей в хирургии

IV. Сплавы с заданными свойствами упругости			
40КХНМ 40КНХМВТЮ	Сплав с временным сопротивлением проволоки 2450—2650 МН/м² (250—270 кгс/мм²), с модулем нормальной упругости 196000 МН/м² (20000 кгс/мм²), немагнитный коррозионно-стойкий в агрессивных средах и в условиях тропического климата, деформационно-твердеющий Сплав немагнитный коррозионно-стойкий деформационно-твердеющий с временным сопротивлением проволоки 1960—2160 МН/м² (200—220 кгс/мм²), с модулем нормальной упругости 216000 МН/м² (22000 кгс/мм²)	Для заводных пружин часовых механизмов, витых цилиндрических пружин, работающих при температуре до 400° С, для кернов электроизмерительных приборов, для деталей в хирургии Для заводных пружин наручных часов	

Марка сплава	Основная техническая характеристика	Примерное назначение
	Сплав немагнитный коррозион-	Для упругих чувствительных элементо:
	но-стойкий дисперсионно-твердеющий с временным сопротивлением 1180—1570 МН/м ² (120—160 кгс/мм ²),	приборов и деталей, работающих при тем пературе до 250° С
	с модулем нормальной упругости 186500—196000 МН/м ²	
36НХТЮ5М	(19000—20000 кгс/мм ²) Сплав немагнитный коррозионно- стойкий дисперсионно-твердеющий	Для упругих чувствительных элементов работающих при температуре до 350° С
	с временным сопротивлением 1375—1765 МН/м ² (140—180 кгс/мм ²),	,
	с модулем нормальной упругости 196000—206000 МН/м ² (20000—21000 кгс/мм ²)	
36НХТЮ8М	Сплав немагнитный коррозионно- стойкий дисперсионно-твердеющий с временным сопротивлением	Для упругих чувствительных элементов работающих при температуре до 400° С
	1375—1960 МН/м ² (140—200 кгс/мм ²), с модулем нормальной упругости 196000—216000 МН/м ²	
58Н ХВКТЮ	(20000—22000 кгс/мм²) Сплав немагнитный коррозионностойкий дисперсионно-твердеющий	Для упругих чувствительных элементов в деталей приборов, работающих при темпе
	с временным сопротивлением 1375—1570 МН/м ² (140—160 кгс/мм ²),	ратуре от минус 196 до плюс 500° С
	с модулем нормальной упругости 196000—216000 МН/м ² (20000—22000 кгс/мм ²)	
17ХНГТ	Сплав коррозионно-стойкий во всех климатических условиях и не- которых агрессивных средах, диспер- сионно-твердеющий, с временным	Для упругих чувствительных элементов в пружинных деталей общего и специальног назначения, работающих при температур до 250° С
	сопротивлением 1470—1720 МН/м ² (150—175 кгс/мм ²), с модулем нормальной упругости 196000 МН/м ²	
97НЛ	(20000 кгс/мм ²) Сплав дисперсионно-твердеющий коррозионно-стойкий с временным	Для токоведущих и силовых упругих чув ствительных элементов, работающих пр
	сопротивлением 1570—1865МН/м ² (160—190 кгс/мм ²), с модулем нормальной упругости	температуре до 300° С
	196000—206000 МН/м ² (20000—21000 кгс/мм ²) и с низким удельным электросопротивлением	
12НХТЮ	0,35 Ом · мм ² /м Сплав дисперсионно-твердеющий	Для упругих чувствительных элементов
	с низким температурным коэффициентом модуля упругости до $100 ^{\circ}$ С ($20 \cdot 10^{-6} 1/^{\circ}$ С) с временным сопротивлением $1180 - 1570 \mathrm{MH/m^2}$	работающих при температуре до 100° С
12НХТЮА	(120—160 кгс/мм ²) Сплав дисперсионно-твердеющий с минимальным температурным	Для волосковых спиралей часовых меха низмов
	коэффициентом модуля упругости, обеспечивающим температурную погрешность волосковых спиралей	
	часов (в системе балансволосок) менее 0,3 с/° С · сут, с временным сопротивлением 1080—1375 МН/м ² (110—140 кгс/мм ²)	

Продолжение табл. 1

Марка сплава	Основная техническая характеристика	Примерное назначение
44НХТЮ	Сплав дисперсионно-твердеющий с низким температурным коэффициентом модуля упругости до $180-200^{\circ}$ С $(15\cdot 10^{-6}\ 1/^{\circ}$ С)	Для упругих чувствительных элементов, работающих при температуре до 200° С
	V. Сверхпроводящие спл	тавы
35БТ	Критическая плотность тока в поперечном магнитном поле $3.2 \cdot 10^6$ А/м при 4.2 К $j_{\rm k} = (3-6) \times 10^4$ А/см². Хорошо деформируется, можно изготовлять из него тонкую проволоку, ленту, сверхпроводящие композиционные материалы с боль-	Для сверхпроводящих экранов магнитного поля, для токопроводов сверхпроводящих магнитных систем
БТЦ-ВД	шим количеством жил (до 361) Критический ток на единицу ширины холоднокатаной ленты толщиной 20 мкм и шириной 90—100 мм не ниже (8,5—9,0) · 10 ⁴ А/м, температура сверхпроводящего перехода 8,5—9,0 K, временное сопротивление разрыву 100—110 Н/мм ²	Для сверхпроводниковых топологических генераторов коммутаторов в системах ввода и вывода энергии сверхпроводящих магнитов; криогенных конструкций
70 ТМ-ВД	Сплав обладает узким сверхпроводящим переходом при 4,5 К, ширина не более 0,2 К, верхним критическим полем, (0,2 ± 0,02) Тл, высоким удельным электросопротивлением 1,0 мкОмК м, слабоменяющимся с температурой (относительное изменение его в диапазоне от —16 до + 24 К не превышает 30 %). Изготавливается в виде проволоки диаметром 0,25—0,35 мм в медной оболочке	Для датчиков температуры, уровнемеров жидкого гелия
	VI. Сплавы с высоким электрическим	и сопротивлением
X15IO5, X23—5	Сплавы жаростойкие в атмосфере окислительной, содержащей серу и сернистые соединения, работают в контакте с высокоглиноземистой керамикой, склонные к провисанию при повышенных температурах, не выдерживают резких динамических нагрузок. Сплав X15Ю5 — заменитель сплава X13Ю4	Для резистивных элементов, а также для электронагревательных устройств
X23Ю5Т, X27Ю5Т	Сплавы жаростойкие в атмосфере окислительной, содержащей серу и сернистые соединения, углеродосодержащей, водороде, вакууме, работают в контакте с высокоглиноземистой керамикой, не склонны к язвенной коррозии, склонны к провисанию при высоких температурах, не выдерживают, резких динамических	Для нагревательных элементов с предельной рабочей температурой 1400 °C (X23Ю5), 1350 °C (X23Ю5Т), в промышленных и лабораторных печах. Сплав X23Ю5Т также применяется для бытовых приборов и электрических аппаратов теплового действия

выдерживают резких динамических

нагрузок

		прообъясние тиом. 1
Марка сплава	Основная техническая характеристика	Примерное назначение
X15H60-H-ВИ, X15H60-H, X20H80-H-ВИ, X20H80-H	Сплавы жаростойкие в атмосфере окислительной, в азоте, аммиаке, неустойчивы в атмосфере, содержащей серу и сернистые соединения, более жаропрочны, чем железохромалюминиевые сплавы	Для нагревательных элементов с предельной рабочей температурой 1100 °C (X15H60-H), 1150 °C (X15H60-H-BИ), 1200 °C (X20H80-H), 1220 °C (X20H80-H-BИ) промышленных электропечей и различных электронагревательных устройств. Сплавы X15H60-H-BИ и X20H80-H-BИ рекомендуются для нагревателей электротермического
ХН70Ю-Н	Сплав жаростоек в окислительной атмосфере, водороде, азотно-водородных смесях, вакууме; более жаропрочен чем железохромалюминиевые сплавы	оборудования повышенной надежности Для нагревателей с предельной рабочей температурой 1200° С промышленных электропечей
ХН20ЮС	Сплав жаростоек в окислительной среде, вакууме. Более жаропрочен, чем железо-хромистые сплавы	Для нагревателей с предельной рабочей температурой 1100° С промышленных электропечей и различных электронагревательных устройств
	Сплавы с заданным температурным электрического сопротив.	
H50K10	Сплав обладает высоким постоянным температурным коэффициентом электрического сопротивления до $5,5\cdot 10^{-3}$ 1/°C в интервале температур от плюс 20 до плюс 500 °C	Для термодатчиков и термочувствительных элементов, работающих в интервале температур от 20 до 500 °C
X20H80-ВИ, X20H80, X15H60	Сплавы после специальной термической обработки имеют температурный коэффициент электрического сопротивления в интервале температур от минус 60 до плюс 100 °C около 0,9 · 10 ⁻⁴ °C ⁻¹ и	Для изготовления ответственных деталей внутривакуумных приборов, соединителей в изделиях электронной техники, для непрецизионных резисторов
Х20Н73ЮМ-ВИ, Н80ХЮД-ВИ	1,5 · 10 ⁻⁴ °C ⁻¹ соответственно Сплав с низким температурным коэффициентом электрического сопротивления и высоким удельным электрическим сопротивлением	Для прецизионных резисторов (сплав X20H73ЮМ-ВИ для резисторов с повышенной стабильностью) и тензорезисторов

(Измененная редакция, Изм. № 5).

Таблица 3

Марка термо- биметалла*	Марка состав- ляющих термо- биметалла**	Основная характеристика	Примерное назначение	
	VII. Термобиметаллы			
TE200/113 (TE2013)	<u>75ГНД</u> 36Н	Термобиметалл с высоким ко- эффициентом чувствительности $(30-36)\cdot 10^{-6}$ град $^{-1}$, с высоким удельным электрическим сопротивлением $(1,08-1,18)$ Ом· мм ² /м	Для термочувствительных элементов приборов (тепловых реле, предохранителей, термометров и т. д.)	
ТБ160/122 (ТБ1613)	<u>75ГНД</u> 45НХ	Термобиметалл с высоким коэффициентом чувствительности $(23-28)\cdot 10^{-6}$ град $^{-1}$, с высоким удельным электрическим сопротивлением $(1,18-1,27)$ Ом \cdot мм 2 /м	Для термочувствительных элементов, нагреваемых электрическим током приборов (автоматов защиты сети, реле и т.д.)	

Продолжение табл. 3

Марка термо- биметалла*	Марка состав- ляющих термо- биметалла**	Основная характеристика	Примерное назначение
ТБ148/79 (ТБ1523)	<u>20НГ</u> 36Н	Термобиметалл с повышенным коэффициентом чувствительности $(21-25)\cdot 10^{-6}$ град $^{-1}$, с повышенным удельным электрическим сопротивлением $(0,77-0,82)$ Ом · мм ² /м	Для термочувствительных элементов приборов (компенсаторов реле защиты и т. д.)
ТБ138/80 (ТБ1423)	24HX 36H	Термобиметалл с повышенным коэффициентом чувствительности $(20-24)\cdot 10^{-6}$ град $^{-1}$, с повышенным удельным электрическим сопротивлением $(0,77-0,84)$ Ом \cdot мм 2 /м	Для термочувствительных элементов приборов (реле — регуляторов, импульсных датчиков, предохранителей и т. д.)
ТБ129/79 (ТБ1323)	<u>19HX</u> 36H	Термобиметалл с повышенным коэффициентом чувствительности $(18,5-22,5)\cdot 10^{-6}$ град $^{-1}$, с повышенным удельным электрическим сопротивлением $(0,76-0,83)$ Ом \cdot мм 2 /м	Для термочувствительных элементов приборов (реле — регуляторов, импульсных датчиков, предохранителей и т. д.)
ТБ107/71 (ТБ1132)	24HX 42H	Термобиметалл со средним ко- эффициентом чувствительности $(16-19)\cdot 10^{-6}$ град $^{-1}$, со средним удельным электрическим сопротивлением $(0.68-0.74)$ Ом \cdot мм 2 /м	То же
ТБ103/70 (ТБ1032)	<u>19HX</u> 42H	Термобиметалл со средним ко- эффициентом чувствительности $(15,5-18,5)\cdot 10^{-6}$ град $^{-1}$, со средним удельным электрическим сопротивлением $(0,67-0,73)$ Ом · мм ² /м	Для термочувствительных элементов приборов (автоматов защиты сети, реле и т. д.)
ТБ73/57 (ТБ0831)	24HX 50H	Термобиметалл с пониженным коэффициентом чувствительности $(10-13)$ 1 10^{-6} град $^{-1}$, со средним удельным электрическим сопротивлением $(0,55-0,60)$ Ом мм ² /м	Для термочувствительных элементов с малой величиной изгиба
ТБ103/70 (ТБ1032)	<u>19HX</u> 42H	Термобиметалл со средним ко- эффициентом чувствительности $(15,5-18,5)\cdot 10^{-6}$ град $^{-1}$, со средним удельным электрическим сопротивлением $(0,67-0,73)$ Ом · мм ² /м	Для термочувствительных элементов приборов (автоматов защиты сети, реле и т. д.)
ТБ73/57 (ТБ0831)	24HX 50H	Термобиметалл с пониженным коэффициентом чувствительности $(10-13)\cdot 10^{-6}$ град $^{-1}$, со средним удельным электрическим сопротивлением $(0,55-0,60)$ Ом \cdot мм 2 /м	Для термочувствительных элемен- тов с малой величиной изгиба
ТБ95/62 (ТБ1031, ТБ68)	<u>20НГ</u> 46Н	Термобиметалл со средним коэффициентом чувствительности $(15-18)\cdot 10^{-6}$ град $^{-1}$ со средним удельным электрическим сопротивлением $(0,60-0,66)$ Ом \cdot мм 2 /м	Для термочувствительных элементов приборов (реле, предохранителей и т. д.)

(Измененная редакция, Изм. № 2, 5).

^{*} Обозначение марок термобиметаллов принято по ГОСТ 10533. ** В числителе указан активный слой, в знаменателе — пассивный.

С. 17 ГОСТ 10994-74

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

РАЗРАБОТЧИКИ

- Е. К. Сизов, С. С. Грацианова, В. В. Каратеева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 17.01.74 № 147
- 3. B3AMEH FOCT 10994-64
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, перечисления, приложения
ГОСТ 7565—81	2.6
ГОСТ 10533—86	Приложение
ГОСТ 12344—2003	2.6
ГОСТ 12345—2001	2.6
ГОСТ 12346—78	2.6
ГОСТ 12347—77	2.6
ГОСТ 12348—78	2.6
ГОСТ 12349—83	2.6
ГОСТ 12350—78	2.6
ГОСТ 12351—2003	2.6
ГОСТ 12352—81	2.6
FOCT 12353—78	2.6
ГОСТ 12354—81	2.6
ГОСТ 12355—78	2.6
ГОСТ 12356—81	2.6
ГОСТ 12357—84	2.6
ГОСТ 1 2364 —84	2.6
ГОСТ 17745—90	2.6
ГОСТ 28473—90	2.6
ГОСТ 29095—91	2.6

- 5. Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 6. ИЗДАНИЕ с Изменениями № 1, 2, 3, 4, 5, утвержденными в марте 1975 г., июне 1978 г., сентябре 1978 г., июле 1982 г., июне 1989 г. (ИУС 5—75, 8—78, 10—79, 11—82, 11—89), Поправкой (ИУС 6—2002)

СОДЕРЖАНИЕ

ΓΟCT 14955—77	Сталь качественная круглая со специальной отделкой поверхности. Технические условия	3
ΓΟCT 10702—78	Прокат из качественной конструкционной углеродистой и легированной стали для холодного выдавливания и высадки. Технические условия	10
ΓΟ CT 14959—79	Прокат из рессорно-пружинной углеродистой и легированной стали. Технические условия	22
ΓΟCT 15891—70	Сталь горячекатаная двухслойная фасонная полосовая для лемехов. Технические условия	36
ΓΟCT 5632—72	Стали высоколегированные и сплавы коррозионно-стойкие жаростойкие и жаропрочные. Марки	39
ГОСТ 5949—75	Сталь сортовая и калиброванная коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия	76
ΓΟCT 20072—74	Сталь теплоустойчивая. Технические условия	99
ΓΟCT 14082—78	Прутки и листы из прецизионных сплавов с заданным температурным коэффициентом линейного расширения. Технические условия	110
ΓΟCT 10994—74	Сплавы прецизионные. Марки	116

СТАЛЬ КАЧЕСТВЕННАЯ И ВЫСОКОКАЧЕСТВЕННАЯ

Сортовой и фасонный прокат и калиброванная сталь

Часть 2

БЗ 2-2003

Редактор М. И. Максимова
Технический редактор В. Н. Прусакова
Корректор С. И. Фирсова
Компьютерная верстка В. Н. Романовой

Изд. лиц. № 02354 от 14.07.2000. Подписано в печать 01.10.2004. Формат $60\times84^1/_8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 15,35 . Уч.-изд. л. 13,80. Тираж 850 экз. Зак. 1855. Изд. № 3168/2. С 4114.